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ABSTRACT: This is a Network-on-Chip (NoC) architecture enables the network topology to be
reconfigured.This enables a general System-on-Chip (SoC) platform, which is currently running on the chip.
The topology is configured using energy- efficient topology switches based on physical circuit-switching The
ReNoC architecture design shows a 56% decrease in power consumption compared to a static 2D mesh
topology
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I. INTRODUCTION
Every new CMOS technology generation enables the design of larger and more complex systems on a
single integrated circuit. The increasing complexity also means that design, test and production costs reach
levels where large volumes must be produced for a chip to be feasible. The time it takes to get a new product to
the market (time-to market) thereby also increases. As envisioned in [1], this trend seems to make ASICs
infeasible for the main bulk of applications the development time will simply be too long

For many applications a more general System-on-Chip (SoC) platform chip could be a viable solution.
Such a SoC platform would contain many different IP-cores including RAMs, CPUs, DSPs, 10s, FPGAs and
other coarse and fine grained programmable IP-cores.

The communication is provided by means of a flexible communication infrastructure in the form of a
Network-on-Chip (NoC) [2, 3]. This allows the same SoC platform to be used in a wide range of different
applications and thereby increases the production volume.

As the same SoC platform is to be used for many different applications, the NoC must be able to
support a wide range of bandwidth and Quality-of-Service (QoS) requirements. The requirements of the
applications can be very different, and the NoC must therefore be very flexible. Currently, the only way to
provide such flexibility is to employ a large packet-switched NoC with an over-engineered total bandwidth
capacity. Such a NoC would take a significant part of the SoCs silicon area and only a fraction of its capacity
is utilized by a given application
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Figure 1. The ReNoC architecture enables a logical network topology to be configured by the application
running on the physical SoC platform.
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The topology switches are implemented using physical circuit-switching as found in FPGAs, to
minimize the power consumption and area overhead. The motivation for inserting a configurable layer below
existing NoC architectures is that physical circuit switching is far more efficient (in terms of area, power and
speed) than intelligent, complex packet-switching which therefore must be avoided when possible. The
communication requirement for the application is therefore used to configure a logical topology that minimizes
the amount of packet-switching.

Il. TERMINOLOGY

This section introduces basic terms used in the paper. Physical architecture is the actual physical layout
of the NoC architecture as shown in the figure 1.Logical topology is the topology that is configured on top of the
physical architecture as shown in figure 1. This is the topology as it is viewed by the application. Physical
circuit-switching is used to denote a dedicated physical connection. Once the connection is set up, data can be
transferred through the connection without any header information and no routing or arbitration is needed. This
is not to be confused with virtual circuit-switching such as Time-Division Multiplexing (TDM).Router is used to
denote any packet-switched router. The route might implement Quality-of-Service features such as TDM and/or
prioritization of data.
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Figure 2. A simple physical architecture where network nodes are connected in a 2D mesh topology. A
network node consists of a router that is wrapped by a topology switch.

The fundamental ideas of ReNoC are best explained through an example. For this, figure 2 shows a
physical architecture consisting of network nodes connected by links in an 2D mesh topology. Each network
node consists of a conventional NoC router which is wrapped by a topology switch. The topology switches are
used to connect links and routers into a logical topology and they thereby allow different application-specific
logical topologies to be configured on top of the same physical architecture. Figure 3 shows two examples of
logical topologies that can be created by configuring the topology switches appropriately. As seen, it is possible
to form long logical links connecting: (i) Any two IP-blocks, (ii) any two routers, and (iii) any IP-core and
router. The physical distance between the IP-core/router does not matter, as long as a logical link can be
established. Figure 3 illustrates that it is possible to configure logical topologies that are very different from the
basic 2D mesh. If desired, it is also possible to configure a logical topology which is a 2D mesh.

111 HETEROGENEOUS PHYSICAL ARCHITECTURE
In this architecture we are using routers and topology Switches separately as well as combined also
taking for network nodes and so the architecture is complex
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Figure 3 : Example of a complex, heterogeneous, physical architecture
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Network nodes can contain a router, a topology switch, or both. Several IP-cores can be connected to
the same network node, several link scan exist between network nodes, and IP-blocks can be directly connected.

The architecture is not restricted to a specific router. The only requirement is that the link width,
including wires for flow-control, matches the ports on the router. In principle the communication protocol is
defined by the routers and the topology switches and links act as passive circuit-switched interconnects. This
means that the architecture can be used in combination with any existing router. The routers can contain Virtual
Channels (VC), Quality of-Service (QoS) implementations such as TDM, queuing buffers, and can be
implemented using synchronous or asynchronous circuit techniques. The ReNoC concept can thus be used with
existing routers including Mango [8], and Xpipes [9].

IV VOPD APPLICATION AS BENCHMARK
Input can be used as HDTV or raw data input streams or real-time video streams as an example for
application of VOPD which is used as bench mark circuit .Tools using for this process is Quartus Il, Sopc
builder, nioslI
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Figure 4: overview of cyclone 111 embedded development kit

This is an advanced cyclone 111 embedded development kit for video processing which have a extra
daughter card interfaced with HSME connector and daughter card includes RS232 serial port and video input
port and video output serial ports so that implementation of video processing is possible, apart from that this
base kit have a LCD display to view the output

Through Synopsys tools (.i.e, Design vision, prime time) we can estimate optimised area and power of
our design but can’t be implemented in fpgas before chip fabrication. so in order to check our designs before
fabrication we are going to quartus Il and nios Il softwares for estimations of optimised area and power , as
well as we can implement on fpgas
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VOPD Schematic
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Results for SoC Implementation
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Verilog coding
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Technology post mapping

alera_re erend_tma (T

awta_tes wend 1 (D

abera_reserem d_l‘!--

Mo O
§te=11_COMBOU T =—
Lk Gl

state0_COMBOU T

thadoss_if_rag-8_COMBOY TiE—>

P sl g
-
B (TR

aeia_nina fug

™

" & T s sl

o LT S

MAITEE  THETE,

iTol

g _cpu 2 dats meel_resddsuBR120

sbed_egu 2 dsta_mai Wi _tesdd s PO

g _cpu 2 _dats_meei_resddaufi0Ra T 0r

Wi_cpm_2_dita_marte_tesdd Ad11R00E=

Wi_cpu_2_dits_maitel_jeidd RK QR24

Wi_cpu_2_dits_marte_iesd A 00T

ihadon_im_reg=S_COMBCU T
Wi_cpu_2_dita_marte_tesdd Al ¥R

shades_it_ragli P2 _COMCU i

r_cpu 2 dota_maste resdd AV T

Wi_opea 2 _data_maite jesdd i wi=irs

er_opu 2 _data_maste Jesdd 2 T3S

Wi_opea 2 _data_maite_tesdd a0

shadoss_in_reg=4_COMBOU TIT—>

Wi_cpu_3_as_maite el Wt
Wr_cpu_2_dit_maste el a0pRS 1 T

Wr_cpu 2 dita_mante _readd a1 R34

wr_cpu 2_dota_master _seadd a2 13810
i_cpm_2_dula_maite _tesdd dal 00

Wi_sg 2 _dils_maitel _fe S MaERST

£hadoss_irf_rage0_COMBCL T

i_maitel_cpu 2 Asl_mad i _fesdd e T

Floww Status

Farmily
Device
Timing Modelz

Tatal regizters
Total pinz

Total PLLz

Quartuz 1 Yersion
Rewizion Mame
Top-level Entity M ame

ket tirning requirements
Total logic elements

Dedicated logic registers

Tatal wirtual pinz

Total memory bits
Embedded kultiplier 3-bit elerment=

NoC results for area

T otal combinational functions

Successful - Sun Jul 14 05:54:52 2013
5.0 Build 132 02/25/2009 5.J “web Edition

DEZ_Fip_File_Systemz
DEZ Fip_File_Systemz
Cuclone [

EF3C1 20F720CT

Final

A

4506 113028 4 & )
3956 /119088 ([ 3 %)
2831 118028812 %)
2924

426 A B32[ 80 %)

]

B4.898 /3981 N2 [2 %]

4/576(<1%]
1/4(25%)

Www.ijesi.org

58 | Page



A Network-on Chip Architecture for...

Power estimation for NoC implementation
PowerPlay Power Analyzer Summary
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V. NETWORK TOPOLOGIES
The following architectures are used for comparison:
Static mesh:
A static 2D mesh topology used as reference. It is similar to the topology shown in figure 2 where each
network node contains a statically connected router.
ReNoC mesh:
The ReNoC architecture that is configured to provide a 2D mesh logical topology similar to Static Mesh
This configuration is used to characterize the Overhead of the topology switches.

ReNoC specific:
The ReNoC architecture that is configured with the application specific topology

VI. CONCLUSION AND FEATURE WORK
We are using vopd application as bench mark circuit here so we can use digital video DVD player as
input and also we can give raw data as input which is real time input directed source from CMOS sensor video
This work can be extended through wireless approach to get process of network on chip for video object plane
decoder application

This can be extended to further research to get blue ray DVD used in DVD player changes to IC chip, utilized
for home theater application and also we can use for implementing applications like multimedia pcs ,video
conferencing
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